Words Reordering based on Statistical Language Model
نویسندگان
چکیده
There are multiple reasons to expect that detecting the word order errors in a text will be a difficult problem, and detection rates reported in the literature are in fact low. Although grammatical rules constructed by computer linguists improve the performance of grammar checker in word order diagnosis, the repairing task is still very difficult. This paper presents an approach for repairing word order errors in English text by reordering words in a sentence and choosing the version that maximizes the number of trigram hits according to a language model. The novelty of this method concerns the use of an efficient confusion matrix technique for reordering the words. The comparative advantage of this method is that works with a large set of words, and avoids the laborious and costly process of collecting word order errors for creating error patterns. Keywords—Permutations filtering, Statistical language model N-grams, Word order errors
منابع مشابه
A Reordering Approach for Statistical Machine Translation
This paper presents a Markov based hierarchical reordering scheme for lexical reordering to incorporate into phrase-based statistical machine translation system. The goal is to reorder the words and phrases in source language syntactic structure into their corresponding target language syntactic order for making translation easy. Without reordering during language translation, sentences can onl...
متن کاملA new model for persian multi-part words edition based on statistical machine translation
Multi-part words in English language are hyphenated and hyphen is used to separate different parts. Persian language consists of multi-part words as well. Based on Persian morphology, half-space character is needed to separate parts of multi-part words where in many cases people incorrectly use space character instead of half-space character. This common incorrectly use of space leads to some s...
متن کاملAn Ngram-based reordering model
This paper describes in detail a novel approach to the reordering challenge in statistical machine translation (SMT). This Ngram-based reordering (NbR) approach uses the powerful techniques of SMT systems to generate a weighted reordering graph. Thus, statistical criteria reordering constraints are supplied to an SMT system, and this allows an extension to the SMT decoding search. The NbR appro...
متن کاملWord Alignment-Based Reordering of Source Chunks in PB-SMT
Reordering poses a big challenge in statistical machine translation between distant language pairs. The paper presents how reordering between distant language pairs can be handled efficiently in phrase-based statistical machine translation. The problem of reordering between distant languages has been approached with prior reordering of the source text at chunk level to simulate the target langu...
متن کاملWhich Words Matter in Defining Phrase Reorderings in Statistical Machine Translation?
Lexicalized and hierarchical reordering models use relative frequencies of fully lexicalized phrase pairs to learn phrase reordering distributions. This results in unreliable estimation for infrequent phrase pairs which also tend to be longer phrases. There are some smoothing techniques used to smooth the distributions in these models. But these techniques are unable to address the similarities...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012